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Giving up the assumption of molecular chaos, we get a hierarchy of equations, 
instead of the Boltzmann equation, governing the motion of a dilute gas. The 
Hilbert-Enskog-Chapman expansion methods for the hierarchy are studied in 
this paper and its continuations. 
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1, I N T R O D U C T I O N  

In recent years Tsug6, Lewis, and others (]-4) began to study the theory of 
turbulence from the standpoint of the kinetic theory of gases. Grad (5) has 
pointed out that their works might shed a new light on the theory of 
turbulence. The method of averaging the Navier-Stokes equations, used in 
the classical theory of turbulence, has at least two disadvantages. First, 
logical confusion may be caused in averaging the Navier-Stokes equations, 
which are the results of a statistical averaging in the kinetic theory of gases 
themselves. Secondly, the problem of closing the infinite set of dynamical 
equations which couple together all the moments of the turbulent velocity 
field in the classical theory cannot be solved without some ad hoc assump- 
tions, which are often more or less arbitrary. The new method used in the 
turbulent kinetic theory of gases is superior to that used in the classical 
theory, because it has succeeded in eliminating these two disadvantages. In 
deriving the macroscopic equations from the microscopic equations, Tsug6 
and Lewis used the generalized Grad's 13-moment method. Grad has 
pointed out that it is worthwhile to generalize the Hi lber t -Enskog-  
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Chapman expansion method, which is better founded, to the case of the 
turbulent kinetic theory of gases. This paper is a result of work along the 
line pointed out by Grad. 

The paper will be divided into three parts, of which the first one is 
concerned with the following topics. With the help of the notion of 
truncated distributions we obtain a hierarchy of equations for the cumulant 
distributions. Since the hierarchy is slightly different from the well-known 
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy and the 
notion of truncated distributions was first introduced by Grad in 1958, we 
call this hierarchy the BBGGKY hierarchy. We develop a generalized 
Hilbert expansion method for the BBGGKY hierarchy and get a Hilbert 
uniqueness theorem. The following two points are noteworthy. First, we (at 
least formally) make no assumption of molecular chaos at all, since the 
form of the BBGGKY hierarchy and the very definition of the expansion 
method have already absorbed, more or less, the essence of the assumption 
of molecular chaos. Secondly, the result of the expansion method for the 
Boltzmann equation is a special case of the results obtained in our general 
scheme. These two points apply to the generalized Enskog-Chapman 
expansion method as well. Having introduced the definition of the general- 
ized Enskog-Chapman expansion method, we obtain the first-order ap- 
proximate equations governing the motion of turbulent flows. There are 
altogether 30 partial differential equations governing 30 unknowns in our 
system of the first-order approximate macroscopic equations. On account 
of the symmetry of the correlation functions, the number of the equations 
can be reduced to 20. 

In the second part of the paper we get a system of equations governing 
the evolution of the correlation functions as follows: 

OR (~,) ~ ) OR (m) ~R(~,~) i , j  i , j  D ( 1 , 1 )  OUi .j... / ~ ( 1 , 1 )  O U j  

~t  - + uk Ox k + ~  a& + , ,  kj ~ - - -  i.k O& 

1 0 R ( 2 ~  ) 1 ~R(~ '2) 
- v A R  (1,1) /~R (1,1) i , j  - -  p i , j  "t- - -  "1- 

3 Ox i 3 02j 

where ~ is a new transport coefficient discovered by the generalized 
Enskog-Chapman expansion method. The above equations are similar in 
structure to the equations governing the evolution of the disturbances of the 
solutions of the Navier-Stokes equations, which have the following forms: 

Ol)i 013 i OU i Op OU i 
- -  " l - U , - -  "[" l)j - -12 A ui  "-[-  " - I - b ! . - -  ~" 0 
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The similarity between the structures of the two systems of equations offers 
us a possibility of constructing a theory for our system of equations similar 
to the classical stability theory for the Navier-Stokes equations and obtain- 
ing a new interpretation of the onset of turbulence. 

In the third part of the paper we carry on with the Enskog-Chapman 
expansion further and discuss the notions of subcriticality and supercriti- 
cality. 

2. HILBERT EXPANSION FOR THE BBGGKY HIERARCHY 

The position of a particle will be denoted by x or x~, (i = 1,2,3), and 
its velocity by v or v i (i = 1,2, 3). In a system of N particles we distinguish 
the positions of the particles by x l . . . . .  x ~ and the same for the velocities 
v 1 . . . . .  v N. The 6N-dimensional phase space with representative point 
Z = ( x  1 . . . .  , x n ,  v l , . . . , v  N) will be denoted  by F, and the six- 
dimensional phase space with representative point Z = (x, v) will be de- 
noted by ~ or Yr if it refers specifically to the particle r with coordinates 
z r = (xr, v~); clearly Z = (z 1 . . . . .  zN) .  

The motion of the system of n particles is governed by equations 

d x  r _ I )  r 

dt 

dv ~ = X r rn---~- 

where m is the mass of a particle (molecule) and X r is the force exerting on 
the particle r. In general we assume that there are no external forces. Hence 

where 

and 

x r  = E x r s ( Z r , z s )  
s ~ r  

x r s ( z r ,  z s) = X12(zr ,  z s) 

x ' : (z ' ,  z :) = r  

r = X 2 - - X  1 

We denote by F N ( Z  ) a probability density defined on F; we have 
F u >>- 0 and f F  N d Z  = 1. Generally we assume that Fu is symmetric with 
respect to the N groups of variables z] . . . . .  z u. The system of the equa- 
tions governing the motion of the n particles defines a flow in the phase 
space F. The evolution of the probability density in time F N ( Z , t  ) is 
determined once it is known initially. The equation governing FN(Z,  t) is 
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the so-called Liouville equation: 

OF u N ~)FN N OF N a____f + ~ v r. 1 r~__lx ~. _ = 0  
r=l - g U + m  0v" 

where the dot " - "  denotes the inner product  of three-dimensional vectors. 
The subdomain D] of the space Yr is defined by the inequality 

Ix ~ -  x '  I/> o . . . . .  Ix r -  xSt i> o (all V r ) 

where o is a small positive number,  s < r, x 1 . . . . .  x" are s given vectors in 
~,~. Finally we set 

R ; = D ; •  . . .  •  

The truncated distribution function F~ is defined by the equality 

F;(z '  . . . . .  z ~) = f~, F , ( z '  . . . . .  zn)dz  r+l . . .  az n 
Rr+ 1 

where, s < r. 
The gas is said to be dilute if the following relations hold: 

F f ( z ' , . . .  , z ' ) ~ F ; - ' ( z '  . . . .  , z  ~) ( r =  1,2 . . . .  ) 

For  dilute gases Ff and F~- l  are considered to be identical and will be 
denoted by f r /Nr:  

f~ = N 'F;  = N ' F f - '  

Cumulant  distribution functions f ,  g, h, k , . . . ,  
tively, by the following equalities: 

f ( z )  = f , ( z )  

g(z  ', z 2 ) = fz(z  ', z 2) - f ( z  ~)f(z 2 ) 

h(z~,z2,z 3) = 

k(z ' ,z2,z3,z4 ) = 

are defined, respec- 

f3(z l, Z2, Z3) -- f ( g  l ) f ( z 2 ) f ( g 3 )  -- f ( z  1)g(z2, Z 3) 

- f ( z2)g(z  ', z 3) - f ( z3 )g (z  ~, z 2) 

fn(z ', z 2, z 3, z 4) - f ( z  ' ) f ( z2 ) f ( z3 ) f ( z  4) 

- f ( z ' )h (A? ,~4)  _ f(z2)h(~,,z3,~4) 

- f (? )h  (~', ~, ~4) _ f(~4)h (~ ,, A ~) 
_](z,) f (~)  g(? ,  ~4) _ f(z 1) f ( ? )  g(? ,  ~4) 

- f ( z  1) f(z4) g(z  2, z 3 ) - f ( z 2 ) f ( z  3 ) g(z  ' , z 4) 

- f ( z 2 ) f ( z  4) g ( z  1 z 3) _ f ( z 3 ) f ( z  4) g(z  ', z 2) 

- g ( z l , z Z ) g ( z 3 , z  4) - g (z i , z3)g(z : , z4)  

- g(z ' ,  ~4) g ( A  ?) 
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Grad has formally derived the Boltzmann equation from the Liouville 
equation. In the process of deduction he has made four assumptions: (1) 
truncation, (2) binary collision, (3) molecular chaos, (4) slow variation offl.  
Among them the assumption of molecular chaos is the most controversial. 
Some people have tried to prove it, but no convincing result has been 
obtained. Recently Tsug6 and others took another viewpoint: the assump- 
tion of molecular chaos is merely conditionally and approximately valid. 
Giving up the assumption of molecular chaos, with the help of the Grad 
method of deduction we can derive a hierarchy of equations instead of the 
Boltzmann equation. We call this hierarchy of equations the BBGGKY 
hierarchy. In terms of the cumulant distribution functions the first three 
equations in the hierarchy are 

+ J[  g(z',Z') - g(z,Z) ] 

+ J[ h(=,~',z') - h(~, ~,e)]~.~ 

(1) 

+J[h(z',~,Z') - h(z,2,Z)]~=. (2) 

( ~t +vi ~-~ii +Vi i i  +6i "8-a~- i , 
=~[ gG~ + ~[ gg]~ + ~[ gg]~= + ~[fh]=~ + ~[yh]~ + ~[ fh];= 

+ J [  k(z,z?,.~',Z') - k(z,~,#,Z)];=; 
+ J[ k(z', ~, ~ ,Z ' ) -  k(=, ~, ~, Z)]~=~ 

+ J[ k(z, ~', ~, Z ' ) -  k(=,2,~, 7)]~=~ (3) 

+ J[ f(W)g(z, ~') - f(Z)g(z,2)];= 

where z = (x, v), 2 = (~, t3) . . . . .  are six-dimensional vectors; J denotes the 
collision integral operator: 

J[ ~(z,,  i ,)  - g(z,Z)] = f [  g(~', z') - g ( z , z ) ] B ( 0 ,  U)dOd~d~ 
where .~ = x, U--  16 -  v l, and the meanings of 0 and e are standard. (6) In 
the case of Maxwellian molecules B(O, U) is independent of U: B(O, U) 
= B(0); the operator ~ is defined as follows: 

~[ fg]== J[ f(~')g(z, Z') - f(2)g(z, Z)]~= 
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interchanging the positions of z and ~ in the above equality, we shall get the 
expression of [fg]~: 

~[ gg]z~ = J[ g(~',z)g(Z',2) - g(Lz)g(Z,~)]~=~ 

+ J [  g( Z',z)g( ~',~) - g( Z,z)g( L ~) ]~=~ 

~-[ gg]2; and ~[ gg]~z can be defined in a similar way: 

~[ fh]z ~ = J[ f (U)h(~ ' , z ,~ )  - f ( z )h (Z , z ,2 ) ]~=~ 

+ J[ f(Z')h(~' ,z ,2)  - f (Z)h(~ ,z ,2)  ]~=;~ 

~-[fh]~ and ~[fh]; z can be defined similarly. 
Now we are going to explain the Hilbert expansion method for the 

BBGGKY hierarchy (1), (2), ( 3 ) , . . . .  First, we multiply the left-hand sides 
of the equations (1), (2), (3) . . . .  , by a small parameter c. Secondly, the 
unknown functions f ,  g, h, k . . . .  , in the hierarchy are replaced, respec- 
tively, by the following power series in c: 

f =  ~ ET(n) (4) 
n =  N o 

g =  ~ c"g (') (5) 
n =  N 1 

h = ~ e'h (') (6) 
n =  N 2 

00 

k = ~, #'k (") (7) 
n= N3 

�9 o . 

is an increasing sequence of nonnegative where N o < N 1 < N 2 < N 3 < �9 �9 �9 
integral numbers. The most interesting is the case N i = i ( i = O, 1 , 2 , . . .  ), 
which corresponds to the fluid motion with maximum correlations. For the 
case N o = 0 and N 1 being sufficiently large the Hilbert expansion method 
will give rise to the classical equations governing the fluid motion without 
correlations, e.g., the Euler equations, the Navier-Stokes equations, the 
Burnett equations, etc. In the sequel the calculation will be carried out only 
for the case N i = i (i = O, 1 , 2 , . . .  ). 

Comparing the coefficients of the powers in ~ on both sides of the 
hierarchy, we obtain the following sequence of equations: 

j [  f ( o ) f ( o ) '  f(o~(o)] = 0 (8) 

~[ f(O)g(,) ]~ + ~[ f(O)g(,) ]~ __ 0 (9) 
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~[ l(~ `~' ]~, + S[ l'~ `~ ],~ + ~[ l<~ `~ ]~, 
= _~.[ g(i)g(1)]z,~_ ~.[ g(l)g(1)],~k_ ~.[ g(l)g(1)]Tz ( l l )  

- J [  h~=~(z',~,~ ') - h(~(~,~,Z) ]~:~ 
- J[  h ( 2 ) ( z , 2 ' , Y  ' )  - h ( 2 ) ( z , 2 ' , % ) ] ; : ~  

_ ~[ f (1)g( l ) ]z_ ~[ f (  l)g(I) ]; (12) 

] = (  +viZ)/(" - : I  - 

_j[f(1)~l)' f(,f(l)] (13) 

The Hilbert expansion method is the one solving equations (8), (9), 
(10), (11), ( 1 2 ) , . . . ,  successively. 

3. SUMMATIONAL INVARIANTS AND CONSERVATION 
EQUATIONS 

It is well known that the solution of equation (8) is the local Maxwell 
distribution 

f(~ =n( 2 - ~  )3/2exp(-rn[v-u[2/2KT ) 

where m is the mass of a molecule, K is the Boltzmann constant, and n, u, T 
are five functions of t and x (the vector u representing three functions). 

The left-hand sides of equations (10), (13) . . . . .  are identical. The 
general solutions of their common homogeneous equation are of the form 

f(o) E aiq', (14) 
0 < i < 4  

where a i are functions of t and x, and ~i are the (first-order) summational 
invariants: 

~ o = 1  

q~i= vi-  ui ( 1 < i < 3 )  

~4 = iv - .r 2 

The facts mentioned above are well known. The left-hand sides of 
equations (9), (12) . . . .  , are identical The symmetric general solutions of 
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their common homogeneous equation are of the form 

f (0 f0 )  ~ aij~i@ (15) 
0<i,j<4 

where aq are functions of t, x, ~; obviously aij (x ,  :~) = aji(~,  x ) ,  in particular, 
aO.(x ,x)  = a j i ( x , x ) .  T h e  equation (11) and the equation immediately after 
equation (13), etc., have identical left-hand sides. The symmetric general 
solutions of their common homogeneous equation are of the form 

f(0f(0~(0) ~ aijki~i~k (16) 
O<i,j, k44 

where a~k are functions of t ,x ,~ ,~;  and agk has a symmetry property 
similar to that of a,7. 

The proofs of these two facts (as well as their generalization to 
higher-order cases) are very simple. Now we are going to sketch the proof 
of the first fact as follows. Substituting the expression (15) for the function 
g in the equation 

+ = o  

in virtue of the definition of J,  the symmetry of J and the properties of the 
(first-order) summational invariants ~i, we can easily show that the above 
equality is satisfied. On the contrary, if g is a solution of the above 
equation, setting 

g = f ( o f o )  g) 

we have 

f (o) j [  j~of(o)(g)(z, zT, ) + g)(z,Y) - ,$,(z, zT) - gJ(z,.r 

+f(0) j [  f(of~(o)(q)(L Z, ) + ~(~,z') - g>(2, Z) - q)(2,z))]~=x = 0 

In deriving the above equality, we have used the property of the Max- 
wellian distribution, f(0)f(0)' =f(o)f~(0). Operating the integral operator 
f ~ ( z ,  ~) �9 �9 �9 dv  d6  on both sides of the above equality, on account of the 
symmetry property of the collision integral operator J,  we have 

f f(~176176 ( [,#(z, zT') + , ( z ,Y )  - r zT) - g)(z, 2)]2 

+ [ ~ ( ~ , z ' )  + , ( ~ , ~ ' )  - <s,(s, ~)  - ~(~,~)]2} 

Hence, 
0( : ,  z') + r ~') - r z )  - r  ~) = o 

r  ) + r  ) - r  - ~>(~,~) = o 

Now it is an immediate consequence of these two equalities that q$ is of the 
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fo r l i 1  
^ 

~ =  E ai j lPiLPj  
0 < i , j < 4  

A 

We call the 25 functions l~i~j (0 5 i, j < 4) the second-order summational 
invariants, the 125 functions ~p;~jLpk (0 < i, j ,  k < 4) the third-order summa, 
tional invariants. 

Using the five first-order summational invariants, we get the following 
five conservation equations from equations (1) and (8): 

where 

Ogi Dn + n = 0 (17) 
D--7 

O Pjj Du~ 
O---~j +mn--~-{ = 0 (I < i -<< 3) (18) 

DT + 2 [ 3ui Oq~ ) 
D----i -3-n-nK ~ PO-~xj + G - 0  (19) 

D 3 O 
Dt - Ot + ui OX i 

n =ffa~ 

1 f v , f d v  Ui = -~  

K f i e -  uJ  ,v 

G = mf(v,- u,)(vj - uj)fdv 

mf q~ = ~- Iv - u[2(•i- u,)fdv 

Using the 25 second-order summational invariants, we can get 25 
conservation equations in a similar way. In order to write down the 
conservation equations we introduce the following notations: 

k l 
A A A 

k , l ) = ^ __ Uis ) __ Ujr) d l ) d ~  R(,, ,,j, j ,  g(z,z,t) H (v~, II %. 
s = l  r = l  

R (  k + 2 ,  ! ) = R f i  ( k + 2 ,  t ) 
il " " "  i k ' J l  " " " Jl "" " i k mm, j l  "" " J! 

(the summation convention is applied on the right-hand side, 1 < m < 3), 

~ 3 +Uk O 3 

b _ O  +a k 
t9t Ot 3~ k 
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The 25 conservation equations are divided into nine classes. Because of 
the symmetry, we shall write down only six of them, 

( Ouk Ol~k) OR(lif O) 3R(~ 
|176176 ) + + ~x k OXk O.~ k |  ~ -z-z- R C ~ 1 7 6  _ _ - 0  (20) 

| + \ 0x k + 02 k ] '"  ' + R(~176 + g(~'~ 0x~ 

0R(~i o) 3R(~, ~) i,k 
+ Ox-----ff- + 3 x ~ - O  (1 < i ~ < 3 )  (21) 

@R (])1)@------~ --1- ~ x  k0uk ~ OX-~kOUk R()~) 1) --I- - ~ - R  (o~) -I'- ~Dt p (1,1) ~XkOHi 

(1 < i , j  ~< 3) (22) "~" i,jk = 0 -1-"~" i,k O---~k .Ir OXk .1 I- ~'~k 

3uk 3~k ) DU, R(~,o) ~o(2,o) 3u, 3R (3'~ 
|176 + ~ + 3x-a-a-~. k R (2'~ + 2-~--~- �9 + " ' "  ig ~ + 0x-----~ 

+ m 

| 

0R (2,~) 
- 0 (23) 

O~k 
A A 

+ + 3x k ")) + 2 -ff~ Dt 3xk |  ~ 3X k ~ R(2 R(]"}) + - - R ( 2 ' ~  + ~ ' "  ik,j 

i}~j a~(3J) (2,2) .... kr 3 R yk 
+ R (2'~) -z-r- + + - 0  (1 < j < 3 )  (24) 

3 x~ 0 x k 0 ~k 

( Ouk 3Uk) Dui Duj 
@ R (2,2._._..~) q- --I- 3x k 2 --fit- i Dt J @t ~ x  k -z-x- R (2'2) + R (1'2) + 2 - z - - R  (2'!) 

+ 2R(2~2 ) 3U i + 2R(2)2 ) 0/~ 3R(~ ,2) 3R (2,3) 
aXk Ox S + Ox--V- + Ox 7- - o  (2s) 

Using the 125 third-order summational invariants we can derive 125 
conservation equations from equation (3). These conservation equations 
will be published in the continuation (II) of this paper. 

4. A GENERALIZATION OF THE HILBERT UNIQUENESS THEOREM 

The solution of equation (8) is the local Maxwell distribution, in which 
the five functions n, u, T are undetermined. In order to solve equations 
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(9)-(13), etc., we have to make the following substitutions; e.g., for the 
unknown function g(2) the substitution is 

g(,2) = f(ofo)  0 

Having made the substitution, we have the left-hand side of equation 
(12) a non-positive-definite symmetric operator on q,. Zero is one of 
its eigenvalues, of which the corresponding eigensubspace is the 25- 
dimensional subspace spanned over 25 second-order summational in- 
variants. Using the results obtained in the articles of Refs. 9 and 10, we can 
easily show that the non-positive-definite symmetric operator mentioned 
above is negative definite on the orthogonal complement of the 25- 
dimensional eigensubspace. Using the spectral theorem for symmetric oper- 
ators,O 1) we can show that a necessary and sufficient condition for solvabil- 
ity of equation (12) is the orthogonality of the right-hand side of equation 
(12) to the 25 second-order summational invariants. It is well known that 
the 24 second-order summational invariants are orthogonal to the terms J 
and ~ on the right-hand side of equation (12). Therefore a necessary and 
sufficient condition for solvability of equation (12) is 

;tl',~O(-~t +%-~xk +~k~s dvd6=O (26) 

The above argument still holds good for the other equations in (8)-(13), etc. 
In case the condition of solvability is satisfied, the solution is not unique 
and the general solutiorr of an equation is the sum of a special solution of 
the equation and the general solution of the corresponding homogeneous 
equation. So we have 

f ( O ) = n  ( ~ m  )3/2exp(_mlv _ ul2/2KT ) 

f( .)  __f(.) +f(o) • ai,,4, i (n >- l) 
0<i<4 

n A g(n) = g(n) .~_ f(of(o) ~, fl,~r (n >/ 1) 
O<i, j<4 

h(.) =/~(.) + f(o](oy(o) E "/~k~'i~j~k 
O<i,j,k<4 

(n > 2) 

where f ( ' ) ,  g('),/7(") . . . .  , are special solutions; and n, u, T, ai", fl~j, 
n Y/jk . . . . .  are functions in time variable and position variables. For the 

sake of definiteness we always require the special solutions f ( ' ) ,  ~('), 
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/~)  . . . . .  to satisfy, respectively, the following conditions: 

ffn),idv = o (n/> 1, 0 < i < 4) 

; g<~)~i~j clv d~3 = 0 (n >/ 1, 0 < i, j < 4) 

f g~")*i4~kdvded6=O (n >~ 2, 0 <<. i , j ,k < 4) 
, . .  

In order that the equations (8)-(13), etc. be solvable, we shall have a 
sequence o f  equations like equation (26). They are a system of partial 
differential equations in unknowns n, u, T, aF,/3/~, "y/j~ . . . . .  etc. The partial 
derivatives of the unknowns with respect to t in these equations are of first 
order. They can be solved from the equations. Using the uniqueness of the 
solution of the Cauchy problem of the partial differential equations we 
have the following theorem. 

Hilbert Uniqueness Theorem. 
(1), (2), (3 ) , . . .  are multiplied 
hierarchy of the form 

After the left-hand sides of equations 
by c, the solutions of the BBGGKY 

f =  ~ cnf ~n~ 
n = 0  

oo 

n = l  

h = ~ e"h ('0 
n = 2  

are uniquely determined by the values of the integrals of the products of 
these solutions and their respective summational invariants over the veloc- 
ity space at t = 0. 

5. ENSKOG-CHAPMAN EXPANSION FOR THE BBGGKY 
HIERARCHY 

It is very difficult to use the Hilbert expansion method to obtain some 
exact results, since we shall encounter a formidable obstacle in the way of 
carrying out the calculation, i.e., solving several systems of nonlinear partial 
differential equations. Enskog and Chapman have cleverly made a detour 
to bypass the obstacle. It is an immediate consequence of the skillful design 
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of their expansion method that the solvability conditions for the integral 
equations are automatically satisfied. Hence we need not solve systems of 
nonlinear partial differential equations. The steps of the Enskog-Chapman 
expansion method for the BBGGKY hierarchy are as follows: (i) multiply 
the left-hand sides of equations (1), (2), (3) . . . .  , by c; (ii) replace O/Ot by 
~]~~ O,/Ot (the meanings of the operators 8,/Ot will be explained later 
on); (iii) substitute the following power series 

f =  ~ e'f (') 
n=No 

g =  ~ e"g (') 
n =  N I 

h = ~ e"h (') 
n =  N 2  

�9 . . 

for the unknowns f, g, h . . . .  in the BBGGKY hierarchy, where N o < N 1 
< N 2 < �9 �9 �9 is an increasing sequence of nonnegative integers; (iv) com- 
paring the coefficients of the powers of e on both sides of the equations we 
have just obtained, we derive a sequence of equations like (8)-(13), etc.; (v) 
solve the equations in the sequence with additional integral conditions: 

( 0 <  i < 4 )  

f f("), ,  dv = 0 (0 < i < 4, n > No) 

f , ,  " f 
g( oq~,~ av d~ = g4',~j av d~ (0 < i, j << 4) 

f g(')~i~jdvd~= 0 (0 < i, j < 4, n > N1) 

f h(N~)tpi~.~dva~d(~= f (0<. i , j ,k  < 4) 

f ( n  A ~ ~ h  ibr o (o < i,j,  < 4,. > N2) 
. . ~  

Now we are going to explain the meanings of the operators ~n/~t as 
follows: The results of the operators ~n/~t operating on the 25 g ' s  will be 
formally given with the help of the conservation equations in the same way 
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as a.n/at, anUffat, and a.T/at were. (8) For example, 

a0 R (2'2) aR(2,2) ^ a R ( 2 , 2 ) ( a U k  auk) 
o---S-- - u~ ax~ u, a~, ~ + ~ R(~,') 

A A 
Dou, (~,2) _ 2 D~ 2R(2~2)(o) au, a~. 

- 2 - - ~  g . - ~  g ( ' ) ) -  ax~ - 2R'"~ 2(~ a~i 

OR (~,2)(o) OR (2.3)(0) 

aXk a2k 

anR (2,2) _ -2R(2~  2)(") a U  i _ 0o(2,2)(") ate.  c')R (3'2)(") 
at ax k "-1" jk a2k ax~ 

a.u; aR(2'3)(") 2 3"ui R(] '2) - 2 ---x-- R(2) ) (n >/ 1) 
a~ k at at 

where 

R(~ '2)(~ . . . .  E ( # " + ' ( v ,  u,)'(v~ u~)(ej u k' 'dvd~ 
l < i , j < 3  ~' 

R(~2)(.), ..~ , R(2'~ )(") can be defined similarly. The results of the 
operator a./at operating on the derivatives of the R's with respect to the 
space variables x i can be defined by formally exchanging a./at and a/ax i. 
If f is a function of n,u, T,R's and their derivatives, a.f/at is formally 
defined by the chain rule. 

The Enskog-Chapman expansion method gives us the following se- 
quence of solvable integral equations: 

j [  f(o)f(o)' _ f(of(o)] = 0 (27) 

~[ f(O)g(,) ]. + ~[ f(O)g(O ]2 = 0 (28) 

( ao vi ~ )f(o) _ j[ g(')(z',Z')- g(')(z,') ] (29) 
~[ fW(')] = t 

+ 

~.[ fW'h(2) ]., + ~.[ f(~ ];, + ~[ f(~ 

= -(~-[ g(')g(')]., + $[ g(')g(')], ,  + $[ g(')g(')],.) (30) 

- -  J [  h ( 2 ) ( z t ~ , z , )  - h(2)(z,~,z~) ]s 

- J [  h(~)( . ,  e', z ') _ h<, ) ( . ,  e. z )  ];=~ 

_ ~[ f(,)g(1) ]z-- ~[ f( ')g(')];  (31) 
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(~o a-~/) Ol f(O) ~.[f(Of(2)] _ ~ + Vi f(1) + -~t 

_ j [  g(2)(z,,Z,) - g(2)(z, Z) ] - J[  f ( l )# ,) '  _/(lf~(l)] 
, . . 

(32) 

The solutions of equations (27)and (28) are well known. The solution 
of equation (29) and its corresponding macroscopic equations will be given 
in the rest of the paper. The solutions of equations (30) and (31) will be 
published in the subsequent article (II), and the solution of equation (32) in 
the subsequent article (III). 

6. THE SOLUTION OF EQUATION (29) 

The solution of equation (27) is the local Maxwell distribution 

n m f(o) = (_~_K_~ )3/Eexp(_ mlv - uI2/2KT) (33) 

where n, u, and T are exactly the same functions as in f. A 
A solution g(l) of equation (28) is a product o f f (~  (~ and a linear 

combination of second-order summational invariants: 

g(O) = f(o](o) ~ aijt~i ~ (34) 
0 < i , j < 4  

where f(0) is the local Maxwell distribution (33), and a,j are functions in 
t ,x ,~.  Because of the symmetry of gO) we have a~j(t,x,.~) = aji(t,~,x ). On 
account of the additional integral condition of the solution of the equation 
we have the following relations between the %. s and the R's: 

m 2 
. R(~) ') (1 < i , j  -4< 3) (35) 

% -  n~KETT 

m 2 ( 5KT R(],0) _ R(],2)) (1 < i < 3) (36) aio = A 2n~K2TT m __m3( 
ai 4 ,, R(~,2) 3 T R(],o) (1 < i < 3 )  (37) 

6n~K3TT 2 

m 2 ( 25 K 2 T I  " R (0,0) 5 K7 ~ R (2,0) 5KT R (0,2) + R (2,2)] 
a00 ----- A 4n~K2TT ~ m 2 m m 1 

(38) 

m3 ( 15K2T73R(~176 + 3KTR(2,o) 
a o 4 - -  A 12n~K 3TT 2 m E m 

+ 5K---T-T R ( 0 , 2 )  _ _  R (2,2)] (39) m ] 
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m 4 (9KETfR(o,o) 3KfR(2,o)3KTR(o,2)+R(2,2)) 
a 4 4 -  ,. ,, - - -  _ 36nnK4T2T  2 m 2 m rn 

(40) 
the expressions of a0~, a4~, and a4o can be given in a symmetric way. 

In order to solve equation (29) we must calculate the fight-hand side of 
the equation. The first term on the right-hand side of the equation is well 
known(7- 8) : 

(~+a0 vi s_~ ) f (o )  = f (o  ){ 1 S T ,  v --~X i i--ui)(rn[~-K~TU[2 5) 

m I ' , v - < I }  dl- g z  aXj ( ' 1 ) , -  Ui)(l) j --  Uj)- "~ 

(41) 

o< i.j.<<4 

1.<< i<y<4 

-,,4- 
+ ~]  a , , J [ f ( ~ 1 7 6 1 6 2  (42) 

1 < i < 4  

where a/j = aij(x, x).  In the derivation of the above equality we have used 
two simple facts: x = ~ in the operator J,  hence a/y = aji; and since 
~0 = ~0-- ~ = qjr~ = 1, we have 

~or + q,'or - ~ o ~  - ,~o,~, = o 
/ ~r 

~ o r  - ~,oq7o = 0 

For the sake of convenience we introduce the following notations: 

w = v - u ,  ~ = ~ - u ,  w' = v ' - u ,  ~ ' = 6 ' - u  
where the function u is exactly the same function as in f(0). From now on 
we assume that the molecules are Maxwellian; therefore, the collision 
integral operator J is of the form 

.~[ . . . ] = f . . . B ( o ) a o a ,  ee 

where the meanings of 0 and c are standard. (6) The following notations are 
well known: 

U = ~ - w ,  ~ = w ' - w ,  lal= 1, A = a ' U  

In a suitable coordinate system the coordinates of U and a will be 
(IU[,0,0) and (cosO, sin0cosE, sinOsin~), respectively, where 0 and c are 
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exactly the same variables as in the collision integral. The relations between 
the molecular velocities before and after the collision are of the form 

w' = w + ~ ( a .  U )  

~'= ~ - -a (a .  U) 
Now we are going to calculate the right-hand side of the equality (42). The 
terms on the right-hand side can be calculated one by one as follows: 

w'~ '  + ~ ' w ' -  w ~ - ~ w  = [w + a ( a .  V ) ] [ ~  - a ( a .  V) ]  

+ [ ~ - ~ ( ~ .  v ) ] [ w  + ~ ( ~ .  v ) ]  - wC,-~w 

= ( ~ .  v ) ( ~  + ~ - ~w - w~) - 2 ( ~ .  u ) 2 ~  

where wff denotes the dyadic product of w and ft. 
Using the following easily verified equalities 

fad~ = 2~rcos0 
I U 1 U (43) 

faade=~rsin20,+ 2~r(1 _ 23_sin20) UU (44) 

we have 

f [w'~' + ~ ' w ' -  w~ dc ~ W W  ~ 

= 2~r cos20(U~ + YeU- Uw - wU) 

f ( 3 sin20]] [U[ 2UU _] - 2t Ut2cos2OL sin20. + - 

t h e  second-order unit tensor and the integral f . - .  dc where 8 is 
= f 2 ~ . . ,  de. The right-hand side of the above equality consists of two 
terms. The first term is a multiple of cos20 sin 20 and the second a multiple 
of cos20. A simple calculation will show us that the last term vanishes. 
Rather than make the direct calculation, we would show it in the following 
way. 

I .emma. If f and g are two (sufficiently good) functions in three 
variables and 

K(O, w, w) = f [ f(w')g(~') + f(vT,')g(w') - f(w)g(~) - f(g,)g(w)] dc 

we have 
K(O + �89162 = K(O,w,~) 

Proof. Denote the vectors a, w', if' for the parameter 0 + l~r by ~, 
~', ~v', respectively. Evidently, ~ = ( -  sin O, cos 0 cos c, cos 0 sin e). A simple 
calculation will show us that ~ '  = ~3', ~,' = w', and the 1emma follows. 



508 

Because cos2(0 + �89 ~r)sin2(0 + �89 ~') = cos 20 sin 20 
cos20 (unless 0 =: �88 ~r + �89 k~r), we have 

f (w'~' + ~'w' - w~ - ~ w ) &  

-- 2~ cos = sin ~ 0(3 u u  - I Ul=6) 

= 2~r cos20 sin2013(ffff + w w -  f f w -  w f f ) -  (Iwl 2 + I~1 = -  2w. ~)~] 

Hence, 

where 

f f~~176 + ~'w'- w~-~w]~(o)dod, de 

= 2 B l n f ( ~  -- [w[28 ) 

Chert 

and cos2(O + �89 7r) ~ 

(45) 

B 1 = ~'L~2 B (O)cos 2 0 sin 2 0 dO 

x w'l~'l 2 + ~'lw'l = - will  = - ~lwl = 

= [ w  + ~(~ .  u ) ] [ l~ l  2 + (~.  u )  2 -  2(~. ~) (~ .  f ) ]  

+ [ ~ - ~ ( ~ .  f ) ] [ Iwt  = + (~.  u )  2 + 2(~ .w)(~ . u ) ]  

- wi l l  2 - ~lwl 2 

= (w + ~ ) ( ~ .  u ) 2 +  2 ( ~ .  u ) [ ( ~ ,  w)~  - ( ~ .  ~ ) w ]  

+ (~.  u)(l~l 2 -Iwl=)~ - 2(,~. u ) 2 [ ~ .  (~ +w)]~  

Using the formulas (43), (44) and the lemma, we have 

f [w ' l~ ' l  ~ + ~ ' lw' l  2 - w i l l  ~ - ~lw12] & 

= 2 ~ c o s 2 0 1 u l 2 ( w  + r + 4~cos~O[(f .  w)~ - ( u .  ~)w] 

+ 2~ cos=o(t~l 2 - Iwl%U- 2~ cos201 uI 2 

(sin20(w + W) + (2  - 3sin2O)(1/IUI2)[(r + w). U] U} 

= -2"rrcos2Osin2• +w) + 6~r cos20 sin20([W[ 2 - ] w j 2 ) U  

= 2~r cos20 sin20[(21Wl 2 - 41wl 2 + 2w.  ~ ) ~  

+ (21wl 2 - 41~12 + 2w. ~)w] 
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Therefore, 

f f (o~(o)[  w, l~ , l  = + r ~ _ wlr ~ _ r  d~ d~ 

= 4Blnf(~ Iwl2w _ 5KTw ) (46) 

Iw'121~'l = - [w[2l,~l 2 

-- Iw + ~ (~ .  u)lz[~ - ~ (~ .  f ) l  2 -  Iwl21~l 2 

= 0wl  = + 1~12)(~ �9 u ) = +  2 ( ~ .  u ) [ l ~ 1 2 ( ~  �9 w) - Iwl=(,~ �9 ~)]  

-- (0/" U )  4 -  4 ( a .  U)2(a �9 w) (a .  ~) 

Using the formulas (43), (44) and the lemma, we have 

= 2~ cos~l Ul2(iwl2 + 1~12) + 47r cos~[l~12(U, w ) -  Iw[Z(U �9 ~) ]  

- 2~r cos20(1 - sin~O )[ U[ 4 

- 4~r cos20 s i n 2 O l U l 2 ( w  �9 if) - 4rr cos20(2 - 3 sin20 )( U.  w)( U- if) 

-- 2~r cos20 sin20[ [ U[ ' - 21UlZ(w �9 r  + 6(U .  w)( U.  ~) ] 

= 2rr cos20sin20[[w[ 4 + I~[ 4 - 41w121~12 + 2(w.  ~)2] 

Therefore, 

f f(of(o)[ i w,121 ~,l= _ iwl=[~l = ] n (0  ) dO d~ d,~ 

= 2B,nf <~ Iwl'- 10 m w + 15 - -  

Combining  the equalities (45), (46), and (47) with the equality (42), we 
get 

.'[ g~'(~',F)- g(~)(~,z)] 

= B,nf(~ E aq(3wiwj -Iwl28• ) + 4 
l < i , j < 3  

+2aa4[lw14 _ ]Olw12 g z  

L m 

a,,(fwJ - 
1 < i < 3  m 

+ '5(-V)21)  48, 
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Substituting the right-hand sides of (41) and (48) for the corresponding 
terms on the right-hand side of (29), we have 

~[f(o)fo)]=f(o){ ~ ( m  3~ 
I-K<i,j<3 KT 3xi 

+ E ( m  2T 
1<i<3 2 K T  2 3Xi 

,,,na,)(w,w, 

- 101w[ m 

C. S. Wang-Chang and G. E. Uhlenbeck have studied the eigenvalue 
problem for the linear Boltzmann integral operator. In particular, the three 
terms on the right-hand side of (49) are eigenfunctions with the eigenvalues 
- 6 B i n ,  --4Bin, and -4Bin  respectively. Therefore, a special solution of 
the equation (49) is 

f(1) =f(o)( i <i,j<3 2 6BInKT ~)x i "3 ]w}280.) 

( m 3 T ) (  5KT ) + E ai4 IwJ2wi - wi 
1<i<3\  8BInKT 2 3x i m 

+ -i-- Iw14 - 1~ Krm + 15 (50) 

Obviously, this solution satisfies the additional integral conditions. 

. THE FIRST-ORDER APPROXIMATE MACROSCOPIC 
EQUATIONS FOR TURBULENT FLOWS 

Setting 

q(i n) = m f l T Wl2Wd (n) dv 

e,)") = m f w, w:f(') dv 

8KT2m B3nai4) 

6B~nKT aq+'aji) 280- ( ~u k 
m 2 - ~ 3x k 

we have 

qi (~ = 0 

qi(1) = _)~( 3xi3T 

p~O) = nKTSij 

[( oui~uj 
P~') = I~ -~j + 3x i 

3B1nKT akql 
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where 
?t- 5K2T KT 

8Bim ' t t -  6B 1 

are the thermal conductivity and the viscosity, respectively, and the posi- 
tion variables x and ~ in ai4 , % . . . .  are equal: x = ~. On account of (37) 
and (35), we have 

q/(O) + q/(0 = _X[ OxiOT 3nK2T4Blm ( R (]'2) 3KTR(]'~ l m  (51) 

e(0) --F p/j(.1) = _1~ -~jXj + OX, nKT  (R(]')I' "F R()"/I)) 

2~ij( ~ + 00ukx~ 3BlmnK-----T- R (l~l))) (52) 

Substituting the right-hand sides of the equalities (51) and (52) for qi 
and P,7 in equations (18) and (19), we get the following approximate 
macroscopic equations: 

~u i Dn + n -- 0 (53) 
Dt 

Dui ~ ( [( ~Ui OUJ 3BIm(R(I,1 , )) 
mn D---i ~ j  ~ ~ + ~x, ~ r r  'J + R~l,~l~ 

26~J ( 3nKT • k 3B~m (~,0]l } 
3 - ~  + Ox~ nK~ R k,k] =0 

(1 ~< i~<3) (54) 

Dt 3nK I~ ~ + 

+ 

Oui 3Blm (R (1,1) )) 
OX i nKT i,j + R (),'i 1) 

280 ( 3nKT Ou~ 3Blmt~(l,l)~ ] Ou i 
3 ~ + a x---k nKT 

0 [ (OT 4Bl m2 ~, ) )]} 3KT R (1,o) Tx/ X (K, ~'2~ = Ox i 3nK2 T i m i 0 

(55) 

Sometimes nKT in the above equations will be denoted by p. By virtue of 
x x, we have R(~f)= (1 0 = A R j,i " The expression R (]'ff) + R (),'i 1) is, therefore, 
equal to 2R (iJf). 
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Since 

g(,)=f(o)flo) E aijq~i~ 
O<i,j<4 

we have 

R (2,o)(o) l R (2'0)8 
ik  ~ "3 ik 

R (2A)(o) 1 o (2,1)~ 
ik,j  "~" ~ *" j ik 

R/(2'2)(~ = �89 R (2'2)/~ik 

R (3,o)(o) _- 5KT R (~,o) 
m 

R(3,0(0)  = 5KTR(~I~.) 
kj m ' 

R(3,2)(o) = 5KTR(1,2) 
m 

Substituting the fight-hand sides of the above equalities for the corre- 
sponding R's in the conservation equations (20)-(25), we obtain the follow- 
ing 25 equations governing the evolution of the 25 R's: 

(On k Ou~) 0R(~ '~ 0R(~ ) 
|176176 + + 0Xk 0Xk 0:~k |  ~ ~ R ( ~ 1 7 6  _ _ - 0  (56) 

|176174 ~ + ( 3uk-~xk + -~k3{ik )R(] '~ + Dui + R(t'~ Ox k 

1 OR(2,o ) ~..~P(l'l)i,k 
+ 3  0xi + 0xk = 0  ( 1 < i < 3 )  (57) 

@R(,) 1) ( Ou k 3~k )R(,)o+ DUi R(O,, ) Daj 3u, 
~t + ~ + ~ -67-- J + - ~  R(~'~ + R(l'" i k , j  O X  k 

+o(1,1) 0t~j + 1 0R(2~ ) 1 3R(~ '2) 
"" i,k 0:~k 3 3X----" T + 3 3~j = 0  (1 < i,j ~< 3) (58) 

0/dk 0/~k "~ (2,0) O u i  0( TR (1'~ |  (2'~ + 5 ~ +  + 2  R(~,0)+ 5K 
| O~ k ]- ~ m Ox k 

OR(2,1) 
+ o~--S- - 0 (59)  
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A A  A 

~---T- + ~ + 0~-~-~ - b T - -  'J  + - -  + " Dt Oxk 

5K 0( TR(~'Ox k,j 1 1 0R (2,2) 
+ + - 0  (1 < m 0x k 3 0~j J < 3) (60) 

~u k OUk 
| + + Ox k - f i r - -  i + 2 -  | t ~ -z-r- R (2,2) + 2 Dui R (],2) Dt 

+ 5 K [  O(TR(~ '2) ) 0(7~R (2'1)) ] 
m OX k + O.~k = 0 (61) 

To save space, we have omitted the equations which are symmetric in form 
to the equations (57), (59), and (60), respectively. There are altogether 30 
equations in (53)-(6 0, which closely govern the 30 unknowns: n, u, T and 
25 R's. On account of the symmetry, the number of equations can be 
reduced to 20. They are the simplest equations governing the motion of the 
turbulent flow. Therefore, they are the equations in hydrodynamics worthy 
of being explored next to the Navier-Stokes equations. 

If the flow is incompressible and ~t is constant, the equations of motion 
can be reduced to the following form: 

3ui - 0  
Oxi 

Du, Op 1 0( R (1'1)~ ( ) 
i,j 7 1 0 (R(I,I)-~ /d, 

D t  Avui + ~X i + n 2 OXj 3n: OXi k,k l = 0 P = 

o(I,]) 
-, ;,k --0 ( I ~ < i < 3 )  

@R(1,0 ^ ( �9 - ~(~,~) Ou~ ~(~,~) Ouj 1 OR(Z) ) 
~'J + ' "  k,j + + + -  6.~ t ~X k "~. i,k - ~ k  g O Xi 

OR (2,~) _ 0 

0R(~'2) ) 
0~r = 0 

(1 <. i , j  < 3) 
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